One-bit compressed sensing with non-Gaussian measurements
نویسندگان
چکیده
In one-bit compressed sensing, previous results state that sparse signals may be robustly recovered when the measurements are taken using Gaussian random vectors. In contrast to standard compressed sensing, these results are not extendable to natural non-Gaussian distributions without further assumptions, as can be demonstrated by simple counter-examples involving extremely sparse signals. We show that approximately sparse signals that are not extremely sparse can be accurately reconstructed from single-bit measurements sampled according to a sub-gaussian distribution, and the reconstruction comes as the solution to a convex program.
منابع مشابه
Compressed Sensing from Phaseless Gaussian Measurements via Linear Programming in the Natural Parameter Space
We consider faithfully combining phase retrieval with classical compressed sensing. Inspired by the recent novel formulation for phase retrieval called PhaseMax, we present and analyze SparsePhaseMax, a linear program for phaseless compressed sensing in the natural parameter space. We establish that when provided with an initialization that correlates with an arbitrary k-sparse n-vector, Sparse...
متن کاملOne-bit Compressed Sensing with the k-Support Norm
In one-bit compressed sensing (1-bit CS), one attempts to estimate a structured parameter (signal) only using the sign of suitable linear measurements. In this paper, we investigate 1-bit CS problems for sparse signals using the recently proposed k-support norm. We show that the new estimator has a closed-form solution, so no optimization is needed. We establish consistency and recovery guarant...
متن کاملNoisy 1-Bit Compressed Sensing Embeddings Enjoy a Restricted Isometry Property
We investigate the sign-linear embeddings of 1-bit compressed sensing given by Gaussian measurements. One can give short arguments concerning a Restricted Isometry Property of such maps using Vapnik-Chervonenkis dimension of sparse hemispheres. This approach has a natural extension to the presence of additive white noise prior to quantization. Noisy one-bit mappings are shown to satisfy an RIP ...
متن کاملOne-bit compressed sensing with partial Gaussian circulant matrices
In this paper we consider memoryless one-bit compressed sensing with randomly subsampled Gaussian circulant matrices. We show that in a small sparsity regime and for small enough accuracy $\delta$, $m\sim \delta^{-4} s\log(N/s\delta)$ measurements suffice to reconstruct the direction of any $s$-sparse vector up to accuracy $\delta$ via an efficient program. We derive this result by proving that...
متن کاملMultivariate Copula Spatial Dependency in One Bit Compressed Sensing
In this letter, the problem of sparse signal reconstruction from one bit compressed sensing measurements is investigated. To solve the problem, a variational Bayes framework with a new statistical multivariate model is used. The dependency of the wavelet decomposition coefficients is modeled with a multivariate Gaussian copula. This model can separate marginal structure of coefficients from the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1208.6279 شماره
صفحات -
تاریخ انتشار 2012